If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-16=0
a = 2; b = -20; c = -16;
Δ = b2-4ac
Δ = -202-4·2·(-16)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{33}}{2*2}=\frac{20-4\sqrt{33}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{33}}{2*2}=\frac{20+4\sqrt{33}}{4} $
| -2=n-2/3 | | x=90+4x | | 10*(-5+y)-3=17 | | 4x2+8x+16=13 | | -12+-24+4+1.5x=-20 | | 10x-3+5x+2=90 | | 7x+x-1=3x+19 | | x=(x-12)+(x+9) | | 6(x-6)+2=8x=8 | | 3x+9+7x-17=90 | | 7x+x-1=3x19 | | 3m-14=5m | | −6(2x+4)+12(8+3x)=−20 | | 2y+1=49 | | -9m+2(m-4)=20 | | 0,9x+5=1,2×-3,4 | | -0.6p+3p+10=16 | | -16x^2+28x+5.5=5 | | 1.2x+5.3=5.6 | | 3(p-0.8)=6 | | 4.9x^2+2x-650=0 | | x-2/3x=100 | | -7-2y=56 | | 6x^2/3-5=49 | | y/7-16=-12 | | 84=9+5q | | 3=2.5(3x-2) | | 0=36t+1/2(-9.801)t^2 | | 29=5r-26 | | 25=5r-26 | | .75x=19800 | | (m-2m+4)^2=0 |